Representations over Totally Real Fields

نویسنده

  • Frazer Jarvis
چکیده

In this paper, we study the level lowering problem for mod 2 representations of the absolute Galois group of a totally real field F. In the case F = Q, this was done by Buzzard; here, we generalise some of Buzzard’s results to higher weight and arbitrary totally real fields, using Rajaei’s generalisation of Ribet’s theorem and previous work of Fujiwara and the author. 2000 Mathematics Subject Classification: 11F33, 11F41, 11G18, 14G35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Artin Representations and Nearly Ordinary Hecke Algebras over Totally Real Fields

We prove many new cases of the strong Artin conjecture for two-dimensional, totally odd, insoluble (icosahedral) representations Gal(F/F ) → GL2(C) of the absolute Galois group of a totally real field F . 2010 Mathematics Subject Classification: 11G80, 11F33, 11F41, 14G22, 14G35

متن کامل

Modularity of Nearly Ordinary 2-adic Residually Dihedral Galois Representations

We prove modularity of some two dimensional, 2-adic Galois representations over a totally real field that are nearly ordinary at all places above 2 and that are residually dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families, together with the 2-adic patching method of Khare and Wintenberger. As an application we deduce modularity of some elliptic curves over...

متن کامل

On Serre’s Conjecture for Mod ` Galois Representations over Totally Real Fields

In 1987 Serre conjectured that any mod ` two-dimensional irreducible odd representation of the absolute Galois group of the rationals came from a modular form in a precise way. We present a generalisation of this conjecture to 2-dimensional representations of the absolute Galois group of a totally real field where ` is unramified. The hard work is in formulating an analogue of the “weight” part...

متن کامل

ON SERRE’S CONJECTURE FOR MOD l GALOIS REPRESENTATIONS OVER TOTALLY REAL FIELDS

In 1987 Serre conjectured that any mod l two-dimensional irreducible odd representation of the absolute Galois group of the rationals came from a modular form in a precise way. We present a generalisation of this conjecture to 2-dimensional representations of the absolute Galois group of a totally real field where l is unramified. The hard work is in formulating an analogue of the “weight” part...

متن کامل

A Modularity Lifting Theorem for Weight Two Hilbert Modular Forms

We prove a modularity lifting theorem for potentially BarosttiTate representations over totally real fields, generalising recent results of Kisin. Unfortunately, there was an error in the original version of this paper, meaning that we can only obtain a slightly weaker result in the case where the representations are potentially ordinary; an erratum has been added explaining this error.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006